Genetic Architecture of Ear Fasciation in Maize (Zea mays) under QTL Scrutiny

نویسندگان

  • Pedro Mendes-Moreira
  • Mara L. Alves
  • Zlatko Satovic
  • João Pacheco dos Santos
  • João Nina Santos
  • João Cândido Souza
  • Silas E. Pêgo
  • Arnel R. Hallauer
  • Maria Carlota Vaz Patto
چکیده

MAIZE EAR FASCIATION Knowledge of the genes affecting maize ear inflorescence may lead to better grain yield modeling. Maize ear fasciation, defined as abnormal flattened ears with high kernel row number, is a quantitative trait widely present in Portuguese maize landraces. MATERIAL AND METHODS Using a segregating population derived from an ear fasciation contrasting cross (consisting of 149 F2:3 families) we established a two location field trial using a complete randomized block design. Correlations and heritabilities for several ear fasciation-related traits and yield were determined. Quantitative Trait Loci (QTL) involved in the inheritance of those traits were identified and candidate genes for these QTL proposed. RESULTS AND DISCUSSION Ear fasciation broad-sense heritability was 0.73. Highly significant correlations were found between ear fasciation and some ear and cob diameters and row number traits. For the 23 yield and ear fasciation-related traits, 65 QTL were identified, out of which 11 were detected in both environments, while for the three principal components, five to six QTL were detected per environment. Detected QTL were distributed across 17 genomic regions and explained individually, 8.7% to 22.4% of the individual traits or principal components phenotypic variance. Several candidate genes for these QTL regions were proposed, such as bearded-ear1, branched silkless1, compact plant1, ramosa2, ramosa3, tasselseed4 and terminal ear1. However, many QTL mapped to regions without known candidate genes, indicating potential chromosomal regions not yet targeted for maize ear traits selection. CONCLUSIONS Portuguese maize germplasm represents a valuable source of genes or allelic variants for yield improvement and elucidation of the genetic basis of ear fasciation traits. Future studies should focus on fine mapping of the identified genomic regions with the aim of map-based cloning.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of the epistatic and QTL×environments interaction effects of plant height in maize (Zea mays L.)

A genetic map containing 103 microsatellite loci and 200 F2 plants derived from the cross R15 × Ye478 were used for mapping of quantitative trait loci (QTL) in maize (Zea mays L.). QTLs were characterized in a population of 200 F2:4 lines, derived from selfing the F2 plants, and were evaluated with two replications in two environments. QTL mapping analysis of plant height was performed by using...

متن کامل

Genetic analysis of yield, yield-components and related phenological traits of maize (Zea mays L.) to breed under moisture stress conditions

     Improved drought-tolerant maize hybrids would significantly reduce water consumption and increase yield in arid environments. Our knowledge about genetic parameters is very essential before starting a successful breeding program. The present research was carried out throughout three successive years between 2013-15 to reveal the pattern of inheritance in yield, yield-components and related...

متن کامل

Genetic analysis of agronomic traits associated with plant architecture by QTL mapping in maize.

Maize (Zea mays L.) is one of the most important cereal crops worldwide, and increasing the grain yield and biomass has been among the most important goals of maize production. The plant architecture can determine the grain yield and biomass to some extent; however, the genetic basis of the link between the plant architecture and grain yield/biomass is unclear. In this study, an immortal F9 rec...

متن کامل

QTL identification of ear leaf morphometric traits under different nitrogen regimes in maize.

The ear leaf is one of the most important leaves in maize (Zea mays); it affects plant morphology and yield. To better understand its genetic basis, we examined ear leaf length, ear leaf width, and ear leaf area for quantitative trait locus (QTL) mapping in a recombinant inbred line population under two nitrogen regimes. Nine QTLs, on chromosomes 1 (one), 2 (one), 3 (one), 4 (three), 7 (one), a...

متن کامل

QTL Controlling Masculinization of Ear Tips in a Maize (Zea mays L.) Intraspecific Cross

Maize is unique among cereal grasses because of its monoecious flowering habit. Male flowers are normally restricted to the tassel that terminates the primary shoot, whereas female flowers occur as ears at the terminal nodes of lateral branches. We observed Ki14, a tropical maize inbred that produces an ear tipped by a staminate (male) spike under certain environmental conditions, such as long ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015